from google.colab import drive
drive.mount('/content/gdrive')
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers.core import Dense
#from keras.optimizers import RMSprop
from tensorflow.keras.optimizers import RMSprop
np.random.seed(7)
print('tensorflow version: ', tf.__version__)
print('keras version: ', keras.__version__)
raw_data = np.genfromtxt('/content/gdrive/My Drive/data/data1.txt', skip_header=36)
print(raw_data)
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
# 입력데이터를 잘라 넣기
xs = np.array(raw_data[:,2], dtype=np.float32)
ys = np.array(raw_data[:,3], dtype=np.float32)
zs = np.array(raw_data[:,4], dtype=np.float32)
# 입력 데이터를 그래프로 표현
fig = plt.figure(figsize=(12,12))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs)
ax.set_xlabel('Weight')
ax.set_ylabel('Age')
ax.set_zlabel('Blood fat')
ax.view_init(15, 15)
plt.show()
x_data = np.array(raw_data[:,2:4], dtype=np.float32)
y_data = np.array(raw_data[:,4], dtype=np.float32)
y_data = y_data.reshape((25,1))
rmsprop = RMSprop(lr=0.01)
model = Sequential()
model.add(Dense(1,input_shape=(2,)))
model.compile(loss='mse',optimizer=rmsprop)
model.summary()
hist = model.fit(x_data, y_data, epochs=1000)
print(hist.history.keys())
#loss 그래프를 그려 봅시다.
plt.plot(hist.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
print("95Kg 45세 blood fat=",model.predict(np.array([95, 45]).reshape(1,2)))
print("65Kg 28세 blood fat=",model.predict(np.array([65, 28]).reshape(1,2)))
W_, b_ = model.get_weights()
x = np.linspace(20, 100, 50).reshape(50,1)
y = np.linspace(10, 70, 50).reshape(50,1)
X = np.concatenate((x,y), axis=1)
Z = np.matmul(X, W_) + b_
fig = plt.figure(figsize=(12,12))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, Z)
ax.scatter(xs, ys, zs)
ax.set_xlabel('Weight')
ax.set_ylabel('Age')
ax.set_zlabel('Blood fat')
ax.view_init(15, 15)
plt.show()
'AI' 카테고리의 다른 글
딥러닝 개론. 시그모이드 함수와 zigzag 문제 (0) | 2021.11.19 |
---|---|
선행대수-인공지능을 위한- 스탠포드-강의록 등 (0) | 2021.09.20 |
fmincon 연습 (0) | 2021.09.19 |
minst 관련 연습 소프트웨어 (0) | 2021.09.17 |
prolog 연습 (0) | 2021.09.04 |